A novel type of mechanoreception by the flagella of Chlamydomonas
نویسنده
چکیده
A novel type of mechanosensory mechanism is found in Chlamydomonas reinhardtii. When a cell is captured with a suction pipette and a negative pressure is applied, the cell produces repetitive Ca2+ impulses at a frequency of 0.5-1.0 Hz. The impulse frequency increases with the applied pressure. The impulses are produced when the flagella are sucked into the pipette but not when the cell body is sucked in leaving the flagella outside the pipette. Cells with short flagella produce impulses of small amplitude. Thus, the site where the cell senses mechanical stimuli and generates the impulse current must be localized at the flagella. The amplitude, shape and ion selectivity of the pressure-induced impulses are distinct from the all-or-none flagellar current that is evoked by photostimulation. The impulses are possibly produced by a combination of currents passing through mechanosensitive channels and Ca2+ channels. This response probably functions to modulate flagellar beating and thereby to regulate the behaviour of the cell.
منابع مشابه
Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملA Novel MAP Kinase Regulates Flagellar Length in Chlamydomonas
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins requir...
متن کاملDefective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number
Wild-type Chlamydomonas reinhardtii carry two flagella per cell that are used for both motility and mating. We describe a mutant, vfl-1, in which the biflagellate state is disrupted such that the number of flagella per cell ranges from 0 to as many as 10. vfl-1 cells possess the novel ability to assemble new flagella throughout the G1 portion of the cell cycle, resulting in an average increase ...
متن کاملO-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach
Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...
متن کاملDefective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas
Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 199 Pt 2 شماره
صفحات -
تاریخ انتشار 1996